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We examine a system of a large number or interacting particles. We 
assume that the i&exaction force between two particles can be expressed 
in terms of a potential of pair-rise interaction. In this case the force 
P(t, x) acting on eaoh particle under the action of the given external 
field a(t, x) can be defined in the form [ 1 1 

F (t, x) = o (1, x) + 1 
p @7 x) s 

P (L x, E) grad, QW- g I) G dE, = 41 @z 43 

(Q(r)#O for O<r<R, Q(r)=0 for r>R) 

Here Q(t) is the potential of pair&wise interaction between two 
particles, p(t. x, 5) is the joint denstty distribution of two particles, 
P(t, x) is the density distribution of a single particle 

t --_,---_,,-~ 
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Fig. 1. 

by the nean stress f,(t, x)d,(t, x) 

the surface), then the equations of 

We isolate a certain volume V 
from this sptem of interacting 
particles. The force P( t, I) acts on 
each particle of this volaae. If sur- 
face forces fy( t. x) are introduced, 
that is, if the particles not lying 
in the volune V are discarded and 
the sum.of their action is replaced 
(A(t, x) is the particle density on 
motion of the volume can, by use of 

the force F( t, x). be represented in the form 

1680 
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s F (t, xl P (4 xl dx = f, (t, x),A, (t, x) ds (dx = dxl dx2 dx8) (1) 
V c 

The equations of the projections of the principal moment of momentum 
are 

\ P (L xl ix X F (t, x)]dx = \ A, (t, x) [x x f, (t, x)] ds 
V x 

(2) 

Nsklng use of the expression of the force F(t, x) in terms of the 
potential of pair-rise interaction Q(r) and, assuming a( t, x) = 0. the 
volume integral in Equation (1) cau be transformed to the surface (Flg.1) 

s . 
F(t, x)P(t, x)dx== dx \ s P (6 x, 3 grad, Q (I x - q) dE = 

V IiJ W(X) 

R 

=p[q 

8 

r2 grad Q (r) dr 
s 

sin f~ de X 

II R‘ II 
2n 

X 
s 

P [L xl - hll, xz. -h/t, x3 - hZ,; (r, 0, cp)] ckp 

0 

VXlO = II, .vxz" = 12, VXaO = 13, RI= h 
C0.S fj 

6= cos-' h 
R (OGhhR) (3) 

Here ds = ds,ds, is a surface element; u(z) is the volume of a seg- 
uent rhich a tangent plane introduced at the point x cuts off of a 
sphere of radius R aith center at the point z; the volume I is a layer 
of the volume V of the thickness R. 

Hence the mean stress at the point x my be defined in the following 
my by the use of (3): 

R R 8 

f, (t, z) A, (t, x) = * dh ,a +grad Q(P) dr 
s i c 

sin fj dfJ X 

0 111 0” 
2n 

X 
s 

P It, x1 - hll, xi - hlz, x3-h&; (r, 0, cp)] dv 

0 

(4) 

It is easy to verify that the stress so defined satisfies the system 
of equations (2). 

For the complete definition of the stress at the point x it is 
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necessary to define the surface density A,(t, x). This clearly Bust be a 
certain functional of the volume density P( t, i). This density can be 
defined in the following way: 

In the given definition of the mean stress it was necessary to take 
the volume r(z) that is cut out by the surface 2 which bounds the volunte 
V front the sphere of radius R with center at the point z belonging to 
the volalae II. The mean stress is rigorously defined in this case for a 
surface with normal t/. 

As is easily seen, if the joint density distribution of the particles 
p(t, x, 6) is assumed uniform, then the force F( t, x) = 0 at all points 
of the volume occupied by the systex! of interacting particles; the mean 
stress will be identical at all points and will be directed along the 
normal to the surface for which it is defined. Hence the force F(t, x) 
and the shear component of the stress in the system of interacting 
particles arise as a consequence of the nonuniformity of the particle 
distribution. 

Cauchy was the firat to use central forces for the definition of 
stress la-3 1. If the mean stress is defined 5s suggested by Cauchy. 
then in the example being considered (Fig. 2) we have 

Thus, the definition of the mean stress accord- 
ing to Cauchy differs from the definition of the 
mean stress in the form (4) only by the summation 

Fig. 2. over zx. In the latter case zg can change only 
along the normal v; in the case of Cauchy’s de- 

finition x2 ohanges in the interior of a hemisphere of radius 3. 

It can be shown that to obtain the mean pressure in an ideal gas it 
is necessary to compute the sum of the change in the momentum as a re- 
sult of the impact of the particles distributed on the positive side of 
the normal with those lying on the negative side. In this computation 
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the line of impact must pass through the point x at which the mean pres- 
sure is defined [4 1. In the definition of the mean stress according to 
Cauchy there occurs a similar computation of the change of momentum. 

It is easy to verify that the change of momentum of Cauchy does not 
satisfy the equations of equilibrium (1) and of moment of momentum (2). 

In Cauchy’s work [ 2,3 1 the existence of an elastic potential was 
shown. Repeating completely Cauchy’s reasoning, we try next to obtain an 
elastic potential. We shall carry out the reasoning for fictitious 
particles zl and zg. In the case under consideration each of the 
particles moves, therefore the geometric point x must be placed to con- 
form to the physically defined particle. 

We examine some surface at the point x, with the position of the sur- 
face defining the normal Y. The stress will be defined according to 

Caachy. We examine the stationary state of 
particles, defined by the condition dP( t, x)/dt = 0. 
We take the stationary state as the initial state u 
and we call the mean stress computed for this 
state the mean initial stress 

uyO (x) = f,” (x) AyO (x) = 
s 

p (x, g) CD (r) b” dE drl 

Fig. 3. 
Let an external field act on the given system 

of interacting particles and let these fictitious particles take on some 
displacements, the displacements having to satisfy the condition that 
the particles lie at all times on a straight line passing through the 
point x. If such fictitious displacements are introduced, then the mean 
stress at the point x and time t for the given surface with direction v 
is defined in the form 

0, (t3 -u) E 
s 

@ (r) p (t. X, %) b” dE drl = 
s 

@(r + 6r) p (x, t) (b” + 6b”) dE drl . (5) 

Thus, for every direction v at the given point x we obtain three 
equations for the determination of four quantities: 6r. 6a,, 6a,. 6a,, 
where the 6ai are increments in the direction cosines of the vector b”. 
From the well-known relation for direction cosines 

(a~ + 6al)” + (R + 6a# + (as + 8r# = 1, 

we obtain, under the assumption that the 8ai are all sufficiently small, 
the additional equation 

a1 6al + a28a2 + as 8a3 = 0 (61 
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Making the assumption that 6r, aa,, Sa,, 5a3 are sufficiently small, 
Equation (5) can be transformed to the form 

Since, as a result of displacements, z1 and x2 remain on the same line, 
passing through the point x, the introduction of the finite deformation 
tensor 6 ij’t, X) at the point x makes it is easy to obtain 

6r=r E ai aj Eij it, x)7 E tt, x) = i ai aj “ij (t, x) (8) 
i, j=l i, j=l 

8Ui = iUj 
Qj % 

i=l 
-."L-.--UcciE (t, 1;)- E(l, x) -j-pi aui;; x1 au. (1, x) 3 a%+ (t, x) 

dXj 
j=l j 

+fz 
3, k=l 

axi axk 

Here Ui( t, X) are the components of the fictitious displacement 
vector. 

rn the aase of small deformations, relations (8) change to the rela- 
tions 

8aI E jtJ aj !Y!_!$? -aie(t, x), e(t, x) = i ai aj eij (2, X) 
j=l 3 i, j-1 

Equation (6). as is easily verified, will be satisfied for small dis- 
placements. 

Using (9), the relation (7) can be transformed to a form analogous to 
the expression for an elastic potential 

A, (tt x, v) = i ai(x, v)v ++ i bij cx, q ( aui (87 x) 
axi + 

i=l 1 i, j=r 

A, (6 x, v) = ’ @ Ct.1 b” [P (L x, g) -P 6, ‘91 di drl 
s 

ai (x, v) = @ (r) ai P lx, 8 4 drl 

bij (x. V) = [IQ’ (r) - CD (r)] b”.ai aj p (x, k) dE drl 
I 

(W 

Thus from the three equations (10) it is necessary to obtain three 
functions of the displacements uI( t, x), pz( t, x), us< t, xl. But Since 
the displacements do not have to depend on the normal V, Equations (10) 
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will not alwags be valid. The question as to what conditions mast be 

applied to the potential of pair-wise interaction Q(r), the joint density 
distribution p(x, c), and the external field a( t, x) in order for Eqaa- 
tions (10) to be valid still remains open. 

We would like to thank A.A. 11’ iashin for posing the problem and for 
critical coaxtents. 
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