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We examine a system of a large number or interacting particles. We
assume that the interaction force between two particles can be expressed
in terms of a potential of pair-wise interaction. In this case the force
F(t, x) acting on each particle under the action of the given external
field a(t, x) can be defined in the form [1 ]

F(t, x)=al(t, x) + }T*x)_ S p(t x, By grad, Q(x—E|)dE, dE = d;dEdEs

(Q(r)==0 for 0L r<R, Q(r)=0 for r>R)

Here @(r) is the potential of pair-wise interaction between two
particles, p(t, x, f) is the joint density distribution of two particles,
P(t, x) is the density distribution of a single particle

P, x)=gp(t, x, £) dE

We isolate a certain volume V
from this system of interacting
particles. The force F(t, x) acts on
each particle of this volume. If sur-
face forces f,(t, Xx) are introduced,
Semmmm—e o= % that is, if the particles not lying
in the volume V are discarded and
the sum. of their action is replaced
by the mean stress fv(t, x4, (t, X) (A(t, x) is the particle density on
the surface), then the equations of motion of the volume can, by use of
the force F(t, x), be represented in the form

Pig. 1.
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S F(, x)P(t, x)dr = S £, x).4, (¢, x)ds (dx = dxy dxy dug) (1)
\4 z

The equations of the projections of the principal moment of momentum
are

S P(t, x)[x XF (¢, x)ldr = S A, x)[xXf, (¢, x)] ds (2)
Vv >}

Making use of the expression of the force F(t, x) in terms of the
potential of pair-wise interaction Q(r) and, assuming a(t, x) = 0, the
volume integral in Equation (1) can be transformed to the surface (Fig.l)

SF(t, x) P (¢, x) dz = %dx S p(t, % E)grad Q (| x—E|)dE =
v W owix)

Sy

R 8
=§ds dhgrzgradQ(r)drSsinGdex
) R, Y

21
X S Pt 21— hly, @3 — hly, 75— hl5; (r, 0, §)] d9
0

vx,° =1, Nxg = g, vx;° = I3, Ry = _._h___

8 = cos™ .;;_ O<h<R) G)

Here ds = d:1d32 is a surface element; w(Zz) is the volume of a seg-
ment which a tangent plane introduced at the point x cuts off of a
sphere of radius R with center at the point Zz; the volume W is a layer
of the volume V of the thickness R.

Hence the mean stress at the point x may be defined in the following
way by the use of (3):

R R
f, (¢, x) A, (t, x) :S dh \ regrad Q (r) dr
] R,

sin  d§ x

S 2

27
X S plt, @1 —hly, 22— ki, x5 — big; (r, 0, ¢)] do (4)
0

It is easy to verify that the stress so defined satisfies the system
of equations (2).

For the complete definition of the stress at the point x it is
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necessary to define the surface density A,(t, x). This clearly must be a
certain functional of the volume density P(t, x). This density can be
defined in the following way:

R Jid a
AL x) = S dh\ rtdr \sin 0 d8
6 R ;

X\ plt, 21— Ry, v — hly, @5 — hig; (v, B, 9)] do
0

In the given definition of the mean stress it was necessary to take
the volume w(z) that is cut out by the surface X which bounds the volume
V from the sphere of radius R with center at the point z belonging to
the volume F. The mean stress is rigorously defined in this case for a
surface with normal v.

As is easily seen, if the joint density distribution of the particles
p(t, x, &) is assumed uniform, then the force F(¢, x) = 0 at all points
of the volume occupied by the system of interacting particles; the mean
stress will be identical at all points and will be directed along the
normal to the surface for which it is defined. Hence the force F(t, Xx)
and the shear component of the stress in the system of interacting
particles arise as a consequence of the nonuniformity of the particle
distribution,.

Cauchy was the first to use central forces for the definition of
stress [ 2-3 ]. If the mean stress is defined as suggested by Cauchy,
then in the example being considered (Fig. 2) we have

R R '
z £, (t, %) A, (t, X) :& dry S grad Q (ry - ro) dr S re?sin § 40
I+ [}] 0

&
>
Aa { 1t o400 0,024 0o 047, 0 1 dg

O

Thus, the definition of the mean stress accord-
ing to Cauchy differs from the definition of the
mean stress in the form (4) only by the summation

Fig. 2. over z,. In the latter case z, can change only
along the normal v; in the case of Cauchy’'s de-
finition Zy changes in the interior of a hemisphere of radius R.

N7
v z,

It can be shown that to obtain the mean pressure in an ideal gas it
is necessary to compute the sum of the change in the momentum as a re-
sult of the impact of the particles distributed on the positive side of
the normal with those lying on the negative side. In this computation
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the line of impact must pass through the point x at which the mean pres-
sure is defined [4 1. In the definition of the mean stress according to
Cauchy there occurs a similar computation of the change of momentum.

It is easy to verify that the change of momentum of Cauchy does not
satisfy the equations of equilibrium (1) and of moment of momentum (2).

In Cauchy’s work [2,3 ] the existence of an elastic potential was
shown. Repeating completely Cauchy’s reasoning, we try next to obtain an
elastic potential. We shall carry out the reasoning for fictitious
particles z; and Z,. In the case under consideration each of the
particles moves, therefore the geometric point x must be placed to con-
form to the physically defined particle.

We examine some surface at the point x, with the position of the sur-
face defining the normal v. The stress will be defined according to
Cauchy. We examine the stationary state of
particles, defined by the condition dP(t,x)/dt=0.

We take the stationary state as the initial state Jé
and we call the mean stress computed for this
state the mean initial stress

3, (%) =1,(x)4,°(x) = Sp (x, E) @ (r) b° dE dry

9 _
D) = %f’), rerdra=|x—E| b°:__I’;_§| 0 z,
Fig. 3.

Let an external field act on the given system
of interacting particles and let these fictitious particles take on some
displacements, the displacements having to satisfy the condition that
the particles lie at all times on a straight line passing through the
point x. If such fictitious displacements are introduced, then the mean
stress at the point x and time t for the given surface with direction v
is defined in the form

o, (t x)= S O(ryp(t, x, §)b°dEdry = S @ (r + 6r) p(x, E) (b° 4 8b°) dE dr; . (5)

Thus, for every direction v at the given point x we obtain three
equations for the determination of four quantities: or, 8a,, 8a2, da,,
where the 8ai are increments in the direction cosines of the vector b°.
From the well-known relation for direction cosines

(ot 4 Boua)? 4+ (@2 + D)2 4 (13 - Bxs)® = 1,
we obtain, under the assumption that the Bai are all sufficiently small,
the additional equation
5% 6(11 -+- dzéag + [« £ 6(13 =0 (6)
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Making the assumption that Sr, Bal, 3a2, Oa, are sufficiently small,
Equation (5) can be transformed to the form

7. (6 %) =0, )+ @ ()b p(x,©) et ars + (0 () p (x0) O ag o, M

Since, as a result of displacements, Z and Z, remain on the same line,
passing through the point x, the introduction of the finite deformation
tensor ¢ ‘-j(t, x) at the point x makes it is easy to obtain

3

& == r Z a ;85 (L, X), € (2 X) = Z ;a8 (1, X) (8)
i, =1 i, je=1
33. du, (t Bu, (1, %) \ S X e & o x)
b Qg e R el N RN —m— T X
j=1 % je=1 j i k=1 i%n

Here ui(t. Xx) are the components of the fictitious displacement
vector.

In the case of small deformations, relations (8) change to the rela-
tioms

[Ou. (&, Xy du, (L, x)
or=r o, 1x), e (b, x) =L %% o4 ) ©)
,%il 9 0 e (4 z( 9z, t =,
3

ou, (t, x)
Mf:Zar_ﬁr_n%emx%dawz Z}%]lﬁzx
j=1 I ,i=1
Equation (8), as is easily verified, will be satisfied for small dis-
placements.

Using (9), the relation (7) can be transformed to a form analogous to
the expression for an elastic potentisal

3 3
A, (1, x, V) xE o, (%, v)au(l x) _§_ 1 2 by (x, v (auiézx} + 6‘uj;; X) )

i==l i, §=1 i i
At x={0OrEexy—rx ol
v ={0narxpain
by; (x, ¥) = S [r® (r) — @ (1)) b, a; p (X, B} dE dry (10)
Thus from the three equations (10) it 1s necessary to obtain three

functions of the displacements u;(¢, X), uy(t, x), ug(t, x). But since
the displacements do not have to depend on the normal v, Equations (16)
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will not always be valid. The question as to what conditions must be
applied to the potential of pair-wise intersction Q(r), the joint demsity
distribution p(x, f), and the external field a(t, x) in order for Equa-
tions (10) to be valid still remains open.

We would like to thank A.A. Il’iushin for posing the problem and for
critical comments.
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